30JUN

Welcome To MJPPS

The editors welcome the submission of relevant articles for editorial consideration. Manuscripts should be addressed to editor@medjpps.com.

Mediterranean Journal of Pharmacy and Pharmaceutical Sciences
https://ppj.org.ly/article/doi/10.5281/zenodo.15335488

Mediterranean Journal of Pharmacy and Pharmaceutical Sciences

Original article

Metronidazole-induced neurotoxicity: Is iron a contributing factor?

Moses W. Bariweni, Vinood B. Patel, Gulrez M. Zariwala, Raymond I. Ozolua

Downloads: 0
Views: 179

Abstract

Metronidazole-induced neurotoxicity is a rising challenge in managing susceptible infections. The mechanisms involved in metronidazole-induced neurotoxicity are not fully unraveled. This study aimed to explore the effect of metronidazole on iron homeostasis in SH-SY5Y neuroblastoma cells. Confluent SH-SY5Y neuroblastoma cells were treated with different concentrations of 1.0, 10, 25, 50, 100, and 250 µM of metronidazole only or in combination with 20 µM iron. DMSO or culture media was used as control. Viability and ferritin assays were conducted on the treated cells. The treatments were for 24 hours, 48 hours, and 72 hours, respectively. In the viability assay, doses of metronidazole reduced the viability of SH-SY5Y neuroblastoma cells in a time and concentration-dependent manner. After 24-hour treatment, 250 µM metronidazole significantly reduced cell viability while 50 µM, 100 µM and 250 µM metronidazole reduced considerably viability only after 48-hour and 72-hour compared with control. Different doses of metronidazole 50 µM, 100 µM, and 250 µM in 20 µM iron reduced viability in a time-dependent manner in all the test periods. Metronidazole also induced a time- and concentration-dependent increase (p<0.05) in cellular iron uptake in the 48-hour and 72-hour treated cells in concentrations above 25 µM metronidazole. It is concluded that metronidazole induces a time and concentration-dependent iron overload and consequent cell death in SH-SY5Y neuroblastoma cells and this may contribute to the mechanism of metronidazole-induced neurotoxicity.

Keywords

Ferritin, ferroptosis, iron, neuroblastoma cells, neurotoxicity

References

  1. Barbosa DJ, Capela JP, Bastosa M, Cavarlho F (2015) In vitro models for neurotoxicology research. Toxicology Research. 4 (4): 801-842. doi: 10.1039/c4tx00043a
  2. Biedler JL, Helson L, Spengler BA (1973) Morphology and growth, tumorigenicity, and cytogenetics of human neuroblastoma cells in continuous culture. Cancer Research. 33 (11): 2643-2652. PMID: 4748425.
  3. Encinas M, Iglesias M, Liu Y, Wang H, Muhaisen A, Cena V, Gallego C, Comella JX (2000) Sequential treatment of SH-SY5Y cells with retinoic acid and brain-derived neurotrophic factor gives rise to fully differentiated, neurotrophic factor-dependent, human neuron-like cells. Journal of Neurochemistry. 75 (3): 991-1003. doi: 10.1046/j.1471-4159.2000.0750991.x
  4. Ferreira PS, Nogueira TB, Costa VM, Branco PS, Ferreira LM, Fernandes E, Bastos ML, Meisel A, Félix Carvalho F, Capela JP (2013) Neurotoxicity of "ecstasy" and its metabolites in human dopaminergic differentiated SH-SY5Y cells. Toxicology Letters. 216 (2-3): 159-170. doi: 10.1016/j.toxlet.2012.11.015
  5. Rouault T (2012) Biogenesis of iron–sulfur clusters in mammalian cells: new insights and relevance to human disease. Disease Models & Mechanisms. 5 (2): 155-164. doi: 10.1242/dmm.009019
  6. Bresgen N, Eckl PM (2015) Oxidative stress and the homeodynamics of iron metabolism. Biomolecules. 5 (2): 808-817. doi: 10.3390/biom5020808
  7. Singh N, Haldar S, Tripathi A, Horback K, Wong J, Sharma D, Beserra A, Suda S, Anbalagan C, Dev S, Mukhopadhyay CK, Singh A (2014) Brain iron homeostasis: from molecular mechanisms to clinical significance and therapeutic opportunities. Antioxidants & Redox Signaling. 20: 1324-1363. doi: 10.1089/ars. 2012.4931
  8. Talapatra S, Dasgupta S, Guha G, Auddy M, Mukhopadhyay A (2010) Therapeutic efficacies of Coriandrum sativum aqueous extract against metronidazole induced genotoxicity in Channa punctatus peripheral erythrocytes. Food and Chemical Toxicology. 48 (12): 3458-3461. doi: 10.1016/j.fct.2010.09.021
  9. Bahn Y, Kim E, Park C, Park HC (2010) Metronidazole induced encephalopathy in a patient with brain abscess. Journal of Korean Neurosurgery Society. 48 (3): 301-304.  doi: 10.3340/jkns.2010.48.3.301
  10. Ward F, Crowley P, Cotter P (2015) Acute cerebellar syndrome associated with metronidazole. Practical Neurology. 15 (4): 298-299. doi: 10.1136/practneurol-2014-000974
  11. Ceruelos HA, Romero-Quezada L, Ledezma J, Contreras L (2019) Therapeutic uses of metronidazole and its uses: An update. European Review for Medical and Pharmacological Sciences. 23 (1): 397-401. doi: 10.26355/ eurrev_201901_16788
  12. Elwakil H, Tawfik R, Alam-Eldin Y, Nassar D (2017) The effect of iron on metronidazole activity against Trichomonas vaginalis in vitro. Experimental Parasitology. 182: 34-46. doi: 10.1016/j.exppara.2017.09.021
  13. Petzold A, Worthington V, Appleby I, Kerr M, Kitchen N, Smith M (2011) Cerebrospinal fluid ferritin level, a sensitive diagnostic test in late-presenting subarachnoid hemorrhage. Journal of Stroke and Cerebrovascular Diseases. 20 (6): 489-493.  doi: 10.1016/j.jstrokecerebrovasdis.2010.02.021
  14. Da Costa R, Szyper-Kravitz M, Szekanecz Z, Csepany T, Danko K, Shapira Y (2011) Ferritin and prolactin levels in multiple sclerosis. The Israel Medical Association Journal. 13 (2): 91-95. PMID: 21443034.
  15. Kovalevich J, Langford D (2013) Considerations for the use of SH-SY5Y neuroblastoma cells in neurobiology. Methods in Molecular Biology. 1078: 9-21. doi: 10.1007/978-1-62703-640-5_2
  16. Zariwala M, Somavarapu S, Farnaud S, Renshaw D (2013) Comparison study of oral iron preparations using a human intestinal model. Scientia Pharmaceutica. 1 (4): 1123-1139. doi: 10.3797/scipharm.1304-03
  17. Park E, Chung SW (2019) ROS-mediated autophagy increases intracellular iron levels and ferroptosis by ferritin and transferrin receptor regulation. Cell Death Disease. 10 (11): 822. doi: 10.1038/s41419-019-2064-5
  18. Elhassanny A, Soliman E, Marie M, McGuire P, Gul W, ElSohly M, Van Dross R (2020) Heme-dependent ER stress apoptosis: a mechanism for the selective toxicity of the dihydroartemisinin, NSC735847, in colorectal cancer cells. Frontiers in Oncology. 10: 965. doi: 10.3389/fonc.2020.00965
  19. Chaturvedi S, Malik MY, Rashid M, Singh S, Tiwari V, Gupta P, Shukla S, Singh S, Wahajuddin M (2020) Mechanistic exploration of quercetin against metronidazole induced neurotoxicity in rats: Possible role of nitric oxide isoforms and inflammatory cytokines. Neurotoxicology. 79: 1-10. doi: 10.1016/j.neuro.2020.03.002
  20. Gandhi D, Tarale P, Naoghare P, Bafana A, Kannan K, Sivanesan S (2016) Integrative genomic and proteomic profiling of human neuroblastoma SH-SY5Y cells reveals signatures of endosulfan exposure. Environmental Toxicology and Pharmacology. 41: 187-194. doi: 10.1016/j.etap.2015.11.021
  21. Bell M, Zempel H (2022) SH-SY5Y-derived neurons: a human neuronal model system for investigating TAU sorting and neuronal subtype-specific TAU vulnerability. Reviews in the Neurosciences. 33 (1): 1-15. doi: 10.1515/revneuro-2020-0152
  22. Lopez-Suarez L, Awabdh S, Coumoul X, Chauvet C (2022) The SH-SY5Y human neuroblastoma cell line, a relevant in vitro cell model for investigating neurotoxicology in human: Focus on organic pollutants. Neurotoxicology. 92: 131-155. doi: 10.1016/j.neuro.2022.07.008
  23. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods. 65 (1-2): 55-63. doi: 10.1016/0022-1759(83)90303-4
  24. Berridge MV, Tan AS, McCoy KD, Wang R (1996) The biochemical and cellular basis of cell proliferation assays that use tetrazolium salts. Biochemica. 4: 14-19. Corpus ID: 88589645.
  25. Marshall NJ, Goodwin CJ, Holt SJ (1995) A critical assessment of the use of microculture tetrazolium assays to measure cell growth and function. Growth Regulation. 5 (2): 69-84. PMID: 7627094.
  26. Xiao Y, Xiong T, Meng X, Yu D, Xiao Z, Song L (2018) Different influences on mitochondrial function, oxidative stress and cytotoxicity of antibiotics on primary human neuron and cell lines. Journal of Biochemical and Molecular Toxicology. 33 (4): e22277. doi: 10.1002/jbt.22277
  27. Sheftel A, Mason A, Ponka P (2012) The long history of iron in the Universe and in health and disease. Biochimica et Biophysica Acta. 1820 (3): 161-187. doi: 10.1016/j.bbagen.2011.08.002
  28. Huang ML, Lane DJR, Richardson DR (2011) Mitochondrial mayhem: the mitochondrion as a modulator of iron metabolism and its role in disease. Antioxidants & Redox Signaling. 15 (12): 3003-3019.  doi: 10.1089/ars. 2011.3921
  29. Jeong S, David S (2003) Glycosylphosphatidylinositol-anchored ceruloplasmin is required for iron efflux from cells in the central nervous system. Journal of Biological Chemistry. 278 (29): 27144-27148. doi: 10.1074/jbc. M301988200
  30. Di Patti M, Persichini T, Mazzone V, Polticelli F, Colasanti M, Musci G (2004) Interleukin-1beta up-regulates iron efflux in rat C6 glioma cells through modulation of ceruloplasmin and ferroportin-1 synthesis. Neuroscience Letters. 363 (2): 182-186. doi: 10.1016/j.neulet.2004.04.005
  31. Aguirre P, Mena N, Tapia V, Arredondo M, Núñez M (2005) Iron homeostasis in neuronal cells: a role for IREG1. BMC Neuroscience. 6: 3. doi: 10.1186/1471-2202-6-3.
  32. Panther E, Zelmanovich R, Hernandez J, Dioso E, Foster D, Lucke-Wold B (2022) Ferritin and neurotoxicity: A contributor to deleterious outcomes for subarachnoid hemorrhage. European Neurology. 85 (6): 415-423. doi: 10.1159/000525389
  33. Zhang N, Yu X, Xie J, Xu H (2021) New insights into the role of ferritin in iron homeostasis and neuro-degenerative diseases. Molecular Neurobiology. 58 (6): 2812-2823. doi: 10.1007/s12035-020-02277-7
  34. Chapman A, Cammack R, Linstead R, Lloyd D (1985) The generation of metronidazole radicals in hydrogenosomes isolated from Trichomonas vaginalis. Journal of Gen Microbiology. 131 (9): 2141-2144. doi: 10.1099/00221287-131-9-2141
  35. Rashed FB, Diaz-Dussan D, Mashayekhi F, Macdonald D, Nation PN, Yang XH, Sokhi S, Stoica AC, El-Saidi H, Ricardo C, Narain R, Ismail IH, Wiebe LI, Kumar P, Weinfeld M (2022) Cellular mechanism of action of 2-nitroimidazoles as hypoxia-selective therapeutic agents. Redox Biology. 52: 102300. doi: 10.1016/j.redox. 2022.102300

Submitted date:
04/04/2025

Reviewed date:
05/01/2025

Accepted date:
05/04/2025

Publication date:
05/09/2025

681dfc80a953957aa51c6563 medjpps Articles
Links & Downloads

Mediterr J Pharm Pharm Sci

Share this page
Page Sections