Immunomodulatory effects of curcumin on receptor activator of nuclear factor-kappa B ligand in periodontitis
Fiki Muhammad Ridho, Wisnu Eka Wardana, Anisa Dias Nur’aini, Ridwan Alfatah, Andang Nurhuda, Abdul Rahman Hilabi
Abstract
Periodontitis is a chronic inflammatory disease of the tooth-supporting structures, often causing alveolar bone loss due to increased osteoclast activity mediated by receptor activator of nuclear factor-kappa B ligand. Curcumin is believed to have immunomodulatory effects and has been proposed as a natural therapeutic agent targeting receptor activators of nuclear factor-kappa B ligand expression. This study aims to evaluate and review the immunomodulatory effects of curcumin on receptor activators of nuclear factor-kappa B ligands in periodontitis. This systematic review followed the PRISMA 2020 guidelines. A search of published literature in PubMed, Scopus, ScienceDirect, and Google Scholar was employed. Risk of bias assessment was performed using three different tools, including QUIN for in vitro studies, SYRCLE’s RoB for animal model studies, and Cochrane RoB 2 for clinical trials. All studies evaluating curcumin’s effects on receptor activator of nuclear factor-kappa B ligand levels, both membrane receptor activator of nuclear factor-kappa B ligand and soluble receptor activator of nuclear factor-kappa B ligand, were considered for inclusion in this review. Of the 307 potentially eligible studies, four studies were ultimately retrieved. This study found that there is a significant decrease in receptor activator of nuclear factor-kappa B ligand levels after curcumin administration. The immunomodulatory effects of curcumin are believed to be through modulation of macrophage polarization and inhibition of the nuclear factor kappa-B signaling pathway, and possibly indirectly through inhibition of autophagy. Thus, curcumin shows promising potential as an adjunct agent for periodontitis through the mechanism of decreasing receptor activator of nuclear factor-kappa B ligand levels which then reduces alveolar bone loss. Large-scale clinical trials with rigorous methods are warranted to determine the optimal dosage, formulation, and long-term safety for clinical application in periodontal therapy targeting receptor activators of nuclear factor-kappa B ligand.
Keywords
References
- Mehrotra N, Singh S. Periodontitis. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Bookshelf ID: NBK541126. PMID: 31082170.
- Kinane DF, Stathopoulou PG, Papapanou PN. Periodontal diseases. Nature Reviews Disease Primers. 2017; 3(1): 17038. doi: 10.1038/nrdp.2017.38
- Chen MX, Zhong YJ, Dong QQ, Wong HM, Wen YF. Global, regional, and national burden of severe periodontitis, 1990-2019: An analysis of the Global Burden of Disease Study. Journal of Clinical Periodontology. 2021; 48(9): 1165-1188. doi: 10.1111/jcpe.13506
- Nascimento GG, Alves‐Costa S, Romandini M. Burden of severe periodontitis and edentulism in 2021, with projections up to 2050: The Global Burden of Disease 2021 study. Journal of Periodontal Research. 2024; 59(5): 823-867. doi: 10.1111/jre.13337
- Bodanese LC, Louzeiro GC, Magnus GA, Baptista ÂH, Salum FG, Mattiello R. Association between periodontitis and myocardial infarction: Systematic review and meta-analysis. International Journal of Cardiovascular Sciences. 2021; 34(5Supl 1): 121-127. doi: 10.36660/ijcs.20200055
- Gobin R, Tian D, Liu Q, Wang J. Periodontal diseases and the risk of metabolic syndrome: An updated systematic review and meta-analysis. Frontiers in Endocrinology. 2020; 11: 336. doi: 10.3389/fendo.2020. 00336
- Gopinath D, Kunnath Menon R, Veettil SK, George Botelho M, Johnson NW. Periodontal diseases as putative risk factors for head and neck cancer: Systematic review and meta-analysis. Cancers. 2020; 12(7): 1893. doi: 10.3390/cancers12071893
- Muñoz Aguilera E, Suvan J, Buti J, Czesnikiewicz-Guzik M, Barbosa Ribeiro A, Orlandi M, et al. Periodontitis is associated with hypertension: A systematic review and meta-analysis. Cardiovascular Research. 2020; 116(1): 28-39. doi: 10.1093/cvr/cvz201
- Ridho FM, Agustina AW, Hidayati NN, Pratama MI, Laksono EP. Exploring the association between periodontitis and erectile dysfunction: A systematic review. Indonesian Andrology and Biomedical Journal. 2024; 5(1): 42-51. doi: 10.20473/iabj.v5i1.56744
- Ridho FM, Alfatah R, Cahyani SM, Tasyah VA, Rahmawati RS. Association between periodontitis and sperm quality: A systematic review and meta-analysis. Rwanda Medical Journal. 2025; 82 (2): 742. doi: 10.1186/ s12903-025-06051-w
- Ridho FM, Algifnita AO, Pramaztri NN, Laksono EP, Allifiah BPN, Ahmad M. Periodontitis as a risk factor of preeclampsia in pregnancy: A scoping review. International Islamic Medical Journal. 2024; 5(2): 9-25. doi: 10.33086/iimj.v5i2.5316
- Stöhr J, Barbaresko J, Neuenschwander M, Schlesinger S. Bidirectional association between periodontal disease and diabetes mellitus: A systematic review and meta-analysis of cohort studies. Scientific Reports. 2021; 11(1): 13686. doi: 10.1038/s41598-021-93062-6
- Tsimpiris A, Tsolianos I, Grigoriadis A, Tsimtsiou Z, Goulis DG, Grigoriadis N. Association of chronic periodontitis with multiple sclerosis: A systematic review and meta-analysis. Multiple Sclerosis and Related Disorders. 2023; 77: 104874. doi: 10.1016/j.msard.2023.104874
- Verma UP, Singh P, Verma AK. Correlation between chronic periodontitis and lung cancer: A systematic review with meta-analysis. Cureus. 2023; 15(3): e36476. doi: 10.7759/cureus.36476
- Zhang Y, Feng W, Li J, Cui L, Chen ZJ. Periodontal disease and adverse neonatal outcomes: A systematic review and meta-analysis. Frontiers in Pediatrics. 2022; 10: 799740. doi: 10.3389/fped.2022.799740
- Javed MU, Asim MA, Fahimullah, Afreen Z, Afreen A, Khalil A. Association of tooth loss with Temporomandibular Disorders. Khyber Medical University Journal. 2020; 12(1): 29-33. doi: 10.35845/kmuj. 2020.19658
- Rocha E, Vanderlei A, Ribeiro C, Lima A, Santos A, Trindade Filho E. Impact of tooth loss on quality of life. Pesquisa brasileira em Odontopediatria e Clínica Integrada. 2016; 16(1): 69-78. doi: 10.4034/PBOCI.2016. 161.08
- Usui M, Onizuka S, Sato T, Kokabu S, Ariyoshi W, Nakashima K. Mechanism of alveolar bone destruction in periodontitis - Periodontal bacteria and inflammation. Japanese Dental Science Review. 2021; 57: 201-208. doi: 10.1016/j.jdsr.2021.09.005
- Sojod B, Chateau D, Mueller CG, Babajko S, Berdal A, Lézot F, et al. RANK/RANKL/OPG Signalization implication in periodontitis: New evidence from a RANK transgenic mouse model. Frontiers in Physiology. 2017; 8: 338. doi: 10.3389/fphys.2017.00338
- Tsukasaki M. RANKL and osteoimmunology in periodontitis. Journal of Bone and Mineral Metabolism. 2021; 39(1): 82-90. doi: 10.1007/s00774-020-01165-3
- Smiley CJ, Tracy SL, Abt E, Michalowicz BS, John MT, Gunsolley J, et al. Systematic review and meta-analysis on the nonsurgical treatment of chronic periodontitis by means of scaling and root planing with or without adjuncts. The Journal of the American Dental Association. 2015; 146(7): 508-524.e5. doi: 10.1016/j.adaj.2015. 01.028
- Akram Z, Abduljabbar T, Kellesarian SV, Abu Hassan MI, Javed F, Vohra F. Efficacy of bisphosphonate as an adjunct to nonsurgical periodontal therapy in the management of periodontal disease: A systematic review. British Journal of Clinical Pharmacology. 2017; 83(3): 444-454. doi: 10.1111/bcp.13147
- Kuritani M, Sakai N, Karakawa A, Isawa M, Chatani M, Negishi-Koga T, et al. Anti-mouse RANKL antibodies inhibit alveolar bone destruction in periodontitis model mice. Biological and Pharmaceutical Bulletin. 2018; 41(4): 637-643. doi: 10.1248/bpb.b18-00026
- Muniz FWMG, Silva BFD, Goulart CR, Silveira TMD, Martins TM. Effect of adjuvant bisphosphonates on treatment of periodontitis: Systematic review with meta-analyses. Journal of Oral Biology and Craniofacial Research. 2021; 11(2): 158-168. doi: 10.1016/j.jobcr.2021.01.008
- Alwithanani N. Role of bisphosphonates in periodontal diseases: Systematic review. Journal of Pharmacy and Bioallied Sciences. 2023; 15(Suppl 1): S46-S53. doi: 10.4103/jpbs.jpbs_504_22
- Boquete‐Castro A, Gómez‐Moreno G, Calvo‐Guirado JL, Aguilar‐Salvatierra A, Delgado‐Ruiz RA. Denosumab and osteonecrosis of the jaw. A systematic analysis of events reported in clinical trials. Clinical Oral Implants Research. 2016; 27(3): 367-375. doi: 10.1111/clr.12556
- Hewlings S, Kalman D. Curcumin: A review of its effects on human health. Foods. 2017; 6(10): 92. doi: 10.3390 /foods6100092
- Ridho FM, Nur’aini AD, Al Atsariyah H, Syachputra AJ, Wardana WE, Nurhuda A. Curcumin and its derivatives as potential antiviral candidates against monkeypox (mpox): A review of computational studies. Ars Pharmaceutica. 2025; 66(2): 225-232. doi: 10.30827/ars.v66i2.32423
- Indriyani N, Nur'aeny N. The Therapeutic effects of curcumin on oral disease: A systematic review. Clinical Pharmacology. 2025; 17: 13-24. doi: 10.2147/CPAA.S506396
- Ridho FM, Syachputra AJ, Fahrudin P, Nurhuda A, Nurliana N, Latuamury NS. In vitro and in vivo effects of curcumin on oral cancer: A systematic review. Current Biomedicine. 2024; 2(2): 101-115. doi: 10.29244/ currbiomed.2.2.101-115
- Ridho FM, Syachputra AJ, Nur’aini AD, Ulfah K, Faqih M, Nurhuda A. Pre-clinical and clinical efficacy of curcumin as an anti-inflammatory agent for periodontitis. A systematic review. Revista Científica Odontológica. 2024; 12(4): e222. doi: 10.21142/2523-2754-1204-2024-222
- Wafula GN, Chege B, Cheruiyot I, Butt F, Munguti J. Protective effects of curcumin on spleen parenchyma in rats treated with dexamethasone. Mediterranean Journal of Pharmacy and Pharmaceutical Sciences. 2025; 5(1): 87-96. 10.5281/zenodo.14802068
- Zhang Y, Huang L, Zhang J, De Souza Rastelli AN, Yang J, Deng D (2022) Anti-inflammatory efficacy of curcumin as an adjunct to non-surgical periodontal treatment: A systematic review and meta-analysis. Frontiers in Pharmacology. 2022; 13: 808460. doi: 10.3389/fphar.2022.808460
- Adam M, Gani A, Manggalatung LJ. Benefits of turmeric (Curcuma longa Linn) in inhibiting alveolar bone resorption in periodontitis: A scoping review. Journal of Dentomaxillofacial Science. 2024; 9(2): 70-77. doi: 10.15562/jdmfs.v9i2.1751
- Borges JS, Paranhos LR, De Souza GL, De Souza Matos F, De Macedo Bernardino Í, Moura CCG, et al. Does systemic oral administration of curcumin effectively reduce alveolar bone loss associated with periodontal disease? A systematic review and meta-analysis of preclinical in vivo studies. Journal of Functional Foods. 2020; 75: 104226. doi: 10.1016/j.jff.2020.104226
- Ke D, Xu H, Han J, Dai H, Wang X, Luo J, et al. Curcumin suppresses RANKL-induced osteoclast precursor autophagy in osteoclastogenesis by inhibiting RANK signaling and downstream JNK-BCL2-Beclin1 pathway. Biomedical Journal. 2024; 47(1): 100605. doi: 10.1016/j.bj.2023.100605
- Mau LP, Cheng WC, Chen JK, Shieh YS, Cochran DL, Huang RY. Curcumin ameliorates alveolar bone destruction of experimental periodontitis by modulating osteoclast differentiation, activation and function. Journal of Functional Foods. 2016; 22: 243-256. doi: 10.1016/j.jff.2016.01.025
- Xiao CJ, Yu XJ, Xie JL, Liu S, Li S. Protective effect and related mechanisms of curcumin in rat experimental periodontitis. Head and Face Medicine. 2018; 14(1): 12. doi: 10.1186/s13005-018-0169-1
- Yang C, Zhu K, Yuan X, Zhang X, Qian Y, Cheng T. Curcumin has immunomodulatory effects on RANKL‐stimulated osteoclastogenesis in vitro and titanium nanoparticle‐induced bone loss in vivo. Journal of Cellular and Molecular Medicine. 2019; 24(2): 1553-1567. doi: 10.1111/jcmm.14842
- Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. British Medical Journal. 2021; 372: n71. doi: 10.1136/bmj.n71
- Sheth VH, Shah NP, Jain R, Bhanushali N, Bhatnagar V. Development and validation of a risk-of-bias tool for assessing in vitro studies conducted in dentistry: The QUIN. The Journal of Prosthetic Dentistry. 2024; 131 (6): 1038-1042. doi: 10.1016/j.prosdent.2022.05.019
- Hooijmans CR, Rovers MM, De Vries RB, Leenaars M, Ritskes-Hoitinga M, Langendam MW. SYRCLE’s risk of bias tool for animal studies. BMC Medical Research Methodology. 2014; 14(1): 43. doi: 10.1186/1471-2288-14-43
- Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. British Medical Journal. 2019; 366: l4898. doi: 10.1136/bmj.l4898
- Sha AM, Garib BT, Azeez SH, Gul SS. Effects of curcumin gel on osteoclastogenic bone markers in experimental periodontitis and alveolar bone loss in wistar rats. Journal of Dental Sciences. 2021; 16(3): 905-914. doi: 10.1016/j.jds.2020.09.015
- Zhou T, Chen D, Li Q, Sun X, Song Y, Wang C. Curcumin inhibits inflammatory response and bone loss during experimental periodontitis in rats. Acta Odontologica Scandinavica. 2013; 71(2): 349-356. doi: 10.3109/ 00016357.2012.682092
- Bhavanam SR, Kripal K, Pa S, Chandrasekaran K. The effect of nutritional supplementation with curcumin on RANKL/OPG ratio in gingival crevicular fluid of chronic periodontitis patients: A randomized controlled trial. Dentistry. 2020; 10(1): 550. doi: 10.35248/2161-1122.20.10.550
- Takegahara N, Kim H, Choi Y. RANKL biology. Bone. 159: 116353. doi: 10.1016/j.bone.2022.116353
- Elango J, Bao B, Wu W. The hidden secrets of soluble RANKL in bone biology. Cytokine. 2021; 144: 155559. doi: 10.1016/j.cyto.2021.155559
- Mogi M, Otogoto J, Ota N, Togari A. Differential expression of RANKL and osteoprotegerin in gingival crevicular fluid of patients with periodontitis. Journal of Dental Research. 2004; 83(2): 166-169. doi: 10.1177/ 154405910408300216
- Sun X, Gao J, Meng X, Lu X, Zhang L, Chen R. Polarized macrophages in periodontitis: Characteristics, function, and molecular signaling. Frontiers in Immunology. 2021; 12: 763334. doi: 10.3389/fimmu.2021. 763334
- Liu C, Zuo M, Zhao J, Niu T, Hu A, Wang H, et al. DPHB inhibits osteoclastogenesis by suppressing NF-κB and MAPK signaling and alleviates inflammatory bone destruction. International Immunopharmacology. 2025; 152: 114377. doi: 10.1016/j.intimp.2025.114377
- Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, et al. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Developmental Cell. 2002; 3(6): 889-8901. doi: 10.1016/S1534-5807(02)00369-6
- Ke D, Wang Y, Yu Y, Wang Y, Zheng W, Fu X, et al. Curcumin-activated autophagy plays a negative role in its anti-osteoclastogenic effect. Molecular and Cellular Endocrinology. 2020; 500: 110637. doi: 10.1016/j.mce. 2019.110637
- Montaseri A, Giampietri C, Rossi M, Riccioli A, Del Fattore A, Filippini A. The role of autophagy in osteoclast differentiation and bone resorption function. Biomolecules. 2020; 10(10): 1398. doi: 10.3390/biom 10101398
Submitted date:
05/01/2025
Reviewed date:
05/22/2025
Accepted date:
05/29/2025
Publication date:
05/30/2025